
Global
edition

An Introduction to Programming Using Python™
David I. Schneider

An Introduction to
Programming Using

Python™

Global Edition

David I. Schneider
University of Maryland

Boston • Columbus • Indianapolis • New York • San Francisco • Hoboken

Amsterdam • Cape Town • Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto

Delhi • Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World WideWeb at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The right of David I. Schneider to be identified as the authors of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled An Introduction to Programming Using Python, ISBN 978-0-
13-405822-1, by David I. Schneider published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-10343-4
ISBN 13: 978-1-292-10343-3

Typeset in 11/13 Goudy Old Style MT Std by Jouve India
Printed and bound by RR Donnelley Kendallville in The United States of America.

Vice President and Editorial Director, ECS: Marcia J.
Horton

Executive Editor: Tracy Johnson
Assistant Acquisitions Editor, Global Editions: Aditee

Agarwal
Executive Marketing Manager: Tim Galligan
Marketing Assistant: Jon Bryant
Team Lead Product Management: Scott Disanno
Production Project Manager: Greg Dulles and Pavithra

Jayapaul
Project Editor, Global Editions: K.K. Neelakantan
Program Manager: Carole Snyder
Director of Operations: Mary Fischer

Operations Specialist: Maura Zaldivar-Garcia
Senior Manufacturing Controller, Global Editions:

Trudy Kimber
Cover Designer: Lumina Datamatics
Global HE Director of Vendor Sourcing and

Procurement: Diane Hynes
Manager, Rights and Permissions: Rachel Youdelman
Associate Project Manager, Rights and Permissions:

William Opaluch
Media Production Manager, Global Editions: Vikram

Kumar
Full-Service Project Management: Shylaja Gattupalli,

Jouve India

http://www.pearsonglobaleditions.com

Guide to VideoNotes
www.pearsonglobaleditions.com/schneider

Chapter 1	 An Introduction to Computing and Problem Solving	

IDLE Walkthrough	 30

Chapter 2	 Core Objects, Variables, Input, and Output	

Assignment Statements	 41
String Functions	 54
Print Formatting	 67
The list Object	 74

Chapter 3	 Structures that Control Flow	

Relational and Logical Operators	 94
Decision Structures	 105
The while Loop	 121
The for Loop	 134

Chapter 4	 Functions	

User-Defined Functions	 160
Scope of Variables	 168
Lambda Expressions	 186

Chapter 5	 Processing Data	

Reading Text Files	 208
Sets	 214
Accessing Data in a CSV File	 224
Dictionaries	 237

Chapter 6	 Miscellaneous Topics	

Exception Handing	 261
Random Values	 267
Turtle Graphics	 273
Recursion	 285

Chapter 7	 Object-Oriented Programming	

Defining a Class	 299
Inheritance	 311
Overriding	 316

Chapter 8	 Graphical User Interface	

Introduction to GUI	 328

VideoNote

3

http://www.pearsonglobaleditions.com/schneider

This page intentionally left blank

Guide to Application Topics

Business and Economics
Admission fee, 240
Analyze fuel economy, 257
Annual percentage yield (APY), 119
Annuity, 50, 132, 133, 148
Automobile depreciation, 148
Balance in a savings account, 136, 181, 182
Balance on a car loan, 131, 148, 155
Balance on a mortgage, 292
Bond yield-to-maturity, 91
Break-even analysis, 49
Calculate a sale price, 119, 354
Calculate a tip, 64, 72, 116
Calculate monthly payment for a mortgage, 321,

322
Calculate weekly pay, 117, 164, 309
Change from a purchase, 118
Check out purchases from a website, 310
Compare interest rates, 119
Compare salary options, 149, 179
Compare simple and compound interest, 148
Compound interest, 49, 50, 119, 124, 132, 133,

148, 165
Consumer price index (CPI), 131
Cost of electricity, 63
Credit card payment, 197
Crop production, 50, 149
Currency exchange rates, 258
Depreciation, 205
Determine a company’s payroll, 326
Discounted price, 49, 62
Distribution of a mortgage payment, 197
Dogs of the DOW, 231
Doubling time of CPI, 131
DOW industrial average, 230, 231
Earnings, 197
Effects of a change in salary, 72, 73, 354, 355
Evaluate effects of different interest rates and com-

pounding periods, 361
Excel, 227
FICA tax, 110, 179
Future value, 73, 165
Growth of an investment, 148
Income tax, 119
Individual retirement account, 156
Interest earned in a savings account, 181, 182
Interest-only mortgage, 322
Journal subscriptions, 221
Lifetime earnings, 148
Make change, 90
Manage a bank account, 133, 325

Monetary units of countries, 258
Monthly payment on a car loan, 91, 355
Mortgage with points, 322
Municipal bonds, 64
Net income, 72
Number of restaurants in United States, 50
Pay raise, 179, 197
Pension calculation, 180, 362
Percentage markup, 64
Percentage profit, 50
Pizza consumption, 50
PNC Christmas price index, 233
Postage costs, 193
Present value, 73
Price-to-earnings ratio, 63
Profit, 49, 109, 120
Profit margin, 64
Retirement plan, 156
Rule of 88, 156
Sales receipt, 236, 310
Savings plan, 132
Simple interest, 148
Small dogs of the DOW, 231
Stock portfolio, 91
Stock purchase, 49
Supply and demand, 149
Toll booth register, 310
Total cost, 116, 117
Total interest payments on a car loan, 155
U.S. national debt, 51
Unit price, 91
Validate credit card number, 157
Validate ISBN, 205
Withdrawal from a savings account, 118

General Interest
Academy award winners, 235, 357
American flag, 295
Anagrams, 194
Analyze a sentence, 87, 250
Bachelor degrees, 256
Boston accent, 151
Caffeine absorption, 156
Calculate number of calories, 51
Calculate semester grades, 311, 312, 314
Computer pioneers, 234
Country flags, 277
Crayon colors, 179, 221, 222
Determine day of week, 236

5

	 6	 ◆	 Guide to Application Topics ﻿ ﻿

Distance from a storm, 62
Earliest colleges, 234
Freshman life goals, 285
Gettysburg Address, 221, 241
Great Lakes, 356, 357
Interpret weather beacon, 108
Military time, 118
Movie quotations, 122
New England states, 195
Number of restaurants, 50
Old McDonald’s Farm, 166
Palindrome, 158, 287
Percentage of college freshmen who smoke, 281
Pig Latin, 117
Pizza consumption, 50
Popular college majors, 284
Population densities, 168
Population growth, 51, 131, 133
Presidential colleges, 358
Principal Languages of the World, 279
Quiz, 106, 117
Qwerty words, 178
Radioactive decay, 131, 132, 147
Solve a puzzle, 150
Soundex system, 157
Speed of a skidding car, 63
State birds, 353
State capitals, 235, 266
Supreme Court justices, 152, 232, 233, 249, 250
Training heart rate, 62
Translate a language, 240
Two-year college enrollments, 284
Types of high schools attended, 284
U.S. cities, 251, 258
U.S. facts, 125
U.S. presidents, 141, 152, 212, 216, 223, 245, 250
U.S. Senate, 256, 357, 358
U.S. states, 82, 151, 196, 197, 211, 222, 235, 246
United Nations, 224, 225, 226, 243, 244, 324,

 340, 362
Validate ISBN, 205
Vowel words, 148, 165

Mathematics
Birthday probability, 132, 151
Calculate a maximum value, 123
Calculate a minimum value, 123
Calculate a range, 194
Calculate a sum, 147, 152, 262

Calculate an average, 75, 117, 123, 148, 150,
222, 262

Calculate with fractions, 308, 309
Calculator, 355
Card probability, 272
Coin toss probability, 272
Coefficient of restitution, 129
Convert lengths, 65, 254
Convert months, 65
Convert speeds, 63, 354
Convert temperatures, 129, 161
Curve grades, 254
Determine divisibility by 27, 125
Dice probability, 271, 307
Error detection system, 157
Factorial, 178
Famous probability problem, 271, 272, 307
Fibonacci sequence, 292
Fractals, 288
Greatest common divisor, 130, 292
Making change, 357
Median, 149, 226
Newton’s law of cooling, 133
Pascal’s triangle, 296
Percentages, 63, 150
Permutations, 295
Powerball probability, 272
Prime factorization, 130, 291
Projectile motion, 50, 204
Quadratic equation, 156
Standard deviation, 226, 254
Subsets, 291
Verbalize a number, 205, 363
Wilson’s theorem, 198

Sports and Games
Baseball, 63, 248, 255
Bridge, 272, 295, 310
Cards, 139, 308
Coin tosses, 272
Dice, 307
Football, 150, 250
Guess my number, 294
Poker, 268, 295, 309
Powerball lottery, 272, 355
Rock, paper, scissors, 272, 320
Roulette, 268
Slot machine, 269
Triathlon, 62

Contents

Guide to VideoNotes  3

Guide to Application Topics  5

Preface  11

Acknowledgments  15

Chapter 1	 An Introduction to Computing

and Problem Solving	 17
1.1	 An Introduction to Computing and Python  18

1.2	 Program Development Cycle  20

1.3	 Programming Tools  22

1.4	 An Introduction to Python  29

Chapter 2	 Core Objects, Variables, Input,

and Output	 39
2.1	 Numbers  40

2.2	 Strings  51

2.3	 Output  65

2.4	 Lists, Tuples, and Files–An Introduction  74

Key Terms and Concepts  87

Programming Projects  90

Chapter 3	 Structures That Control Flow	 93
3.1	 Relational and Logical Operators  94

3.2	 Decision Structures  105

3.3	 The while Loop  121
7

	 8	 ◆	 Contents ﻿ ﻿

3.4	 The for Loop  134

Key Terms and Concepts  153

Programming Projects  155

Chapter 4	 Functions	 159
4.1	 Functions, Part 1  160

4.2	 Functions, Part 2  180

4.3	 Program Design  198

Key Terms and Concepts  202

Programming Projects  204

Chapter 5	 Processing Data	 207
5.1	 Processing Data, Part 1  208

5.2	 Processing Data, Part 2  223

5.3	 Dictionaries  237

Key Terms and Concepts  251

Programming Projects  254

Chapter 6	 Miscellaneous Topics	 259
6.1	 Exception Handling  260

6.2	 Selecting Random Values  267	

6.3	 Turtle Graphics  273

6.4	 Recursion  285

Key Terms and Concepts  293

Programming Projects  294

	 ﻿   Contents﻿	 ◆	 9

Chapter 7	 Object-Oriented Programming	 297
7.1	 Classes and Objects  298

7.2	 Inheritance  311

Key Terms and Concepts  323

Programming Projects  324

Chapter 8	 Graphical User Interface	 327
8.1	 Widgets  328

8.2	 The Grid Geometry Manager  341

8.3	 Writing GUI Programs  350

Key Terms and Concepts  359

Programming Projects  361	

Appendices
Appendix A	 ASCII Values  365

Appendix B	 Reserved Words  367

Appendix C	 Installing Python and IDLE  369

Answers		 371

Index		 421

This page intentionally left blank

Preface

Since its introduction in the 1990s, Python has become one of the most widely used
programming languages in the software industry. Also, students learning their first

programming language find Python the ideal tool to understand the development of
computer programs.

My objectives when writing this text were as follows:

1.	 To develop focused chapters. Rather than covering many topics superficially,
I concentrate on important subjects and cover them thoroughly.

2.	 To use examples and exercises with which students can relate, appreciate, and feel
comfortable. I frequently use real data. Examples do not have so many embel-
lishments that students are distracted from the programming techniques
illustrated.

3.	 To produce compactly written text that students will find both readable and informa-
tive. The main points of each topic are discussed first and then the peripheral
details are presented as comments.

4.	 To teach good programming practices that are in step with modern programming
methodology. Problem-solving techniques, structured programming, and
object-oriented programming are thoroughly discussed.

5.	 To provide insights into the major applications of computers.

Unique and Distinguishing Features 
Programming Projects. Beginning with Chapter 2, every chapter contains programming
projects. The programming projects reflect the variety of ways that computers are
used. The large number and range of difficulty of the programming projects pro-
vide the flexibility to adapt the course to the interests and abilities of the students.
Some programming projects in later chapters can be assigned as end-of-the-semester
projects.

Exercises for Most Sections. Each section that teaches programming has an exercise
set. The exercises both reinforce the understanding of the key ideas of the section
and challenge the student to explore applications. Most of the exercise sets require
the student to trace programs, find errors, and write programs. The answers to every
odd-numbered exercise in the book, with the exception of Section 6.3 (Turtle Graph-
ics) and Chapter 8 (Graphical User Interface), are given at the end of the text. (The
answers to every other odd-numbered exercise from Section 6.3 are given. The Stu-
dent Solutions Manual contains the answer to every odd-numbered exercise in the
book.) A possible output accompanies nearly every programming exercise and pro-
gramming project.

Practice Problems. Practice Problems are carefully selected exercises located at the end
of a section, just before the exercise set. Complete solutions are given following the
exercise set. The practice problems often focus on points that are potentially confusing

11

	 12	 ◆	 Preface﻿ ﻿

or are best appreciated after the student has thought about them. The reader should
seriously attempt the practice problems and study their solutions before moving on
to the exercises.

Comments. Extensions and fine points of new topics are deferred to the “Comments”
portion at the end of each section so that they will not interfere with the flow of the
presentation.

Key Terms and Concepts. In Chapters 2 through 8, the key terms and concepts (along
with examples) are summarized at the end of the chapter.

Guide to Application Topics. This section provides an index of programs that deal
with various topics including Business, Economics, Mathematics, and Sports.

VideoNotes. Twenty-four VideoNotes are available at www.pearsonhighered.com/
schneider. VideoNotes are Pearson’s visual tool designed for teaching key program-
ming concepts and techniques. VideoNote icons are placed in the margin of the text
book to notify the reader when a topic is discussed in a video. Also, a Guide to Video
Notes summarizing the different videos throughout the text is included.

Solution Manuals. The Student Solutions Manual contains the answer to every odd-
numbered exercise (not including programming projects). The Instructor Solutions
Manual contains the answer to every exercise and programming project. Both solu-
tion manuals are in pdf format and can be downloaded from the Publisher’s website.

Source Code and Data Files. The programs for all examples and the data files needed
for the exercises can be downloaded from the Publisher’s website.

How to Access Instructor and Student Resource
Materials 
Online Practice and Assessment with 

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of
programming. Through practice exercises and immediate, personalized feedback,
MyProgrammingLab improves the programming competence of beginning students
who often struggle with the basic concepts and paradigms of popular high-level pro-
gramming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hun-
dreds of small practice problems organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable students to figure out what went
wrong—and why. For instructors, a comprehensive gradebook tracks correct and
incorrect answers and stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to
get started using MyProgrammingLab in your course, visit www.myprogramminglab
.com.

Instructor Resources 

The following protected instructor resource materials are available on the Publisher’s
website at www.pearsonglobaleditions.com/schneider.
•	 Test Item File

•	 PowerPoint Lecture Slides

MyProgrammingLab™

http://www.pearsonhighered.com/schneider
http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/schneider
http://www.pearsonhighered.com/schneider
http://www.myprogramminglab.com

	 ﻿   Preface ﻿	 ◆	 13

•	 Instructor Solutions Manual

•	 VideoNotes

•	 Programs for all examples and answers to exercises and programming projects
(Data files needed for the exercises are included in the Programs folder.)

Student Resources 

Access to the Premium website and VideoNotes tutorials is located at www
.pearsonglobaleditions.com/schneider. Students must use the access card located
in the front of the book to register and access the online material. Instructors must
register on the site to access the material.

The following content is available through the Premium website:
•	 VideoNotes

•	 Student Solutions Manual

•	 Programs for examples (Data files needed for the exercises are included in the
Programs folder.)

http://www.pearsonglobaleditions.com/schneider
http://www.pearsonglobaleditions.com/schneider

This page intentionally left blank

Acknowledgments

Many talented instructors and programmers provided helpful comments and
constructive suggestions during the writing of this text and I am most grateful

for their contributions. The book benefited greatly from the valuable comments of
the following reviewers:

Daniel Solarek, University of Toledo
David M. Reed, Capital University
Debraj De, Georgia State
Desmond Chun, Chabot College
Mark Coffey, Colorado School of Mines
Randall Alexander, College of Charleston
Vineyak Tanksale, Ball State University
Zhi Wei, New Jersey Institute of Technology

Many people are involved in the successful publication of a book. I wish to thank
the dedicated team at Pearson whose support and diligence made this textbook pos-
sible, especially Carole Snyder, Program Manager for Computer Science, Kelsey
Loanes, Editorial Assistant for Computer Science, and Scott Disanno, Team Lead
Product Management.

I would like to thank Jacob Saina for his assistance with every stage in the writing
of the book. Production Editors Pavithra Jayapaul and Greg Dulles did a fantastic
job producing the book and keeping it on schedule. I am grateful to John Russo of
the Wentworth Institute of Technology for producing the VideoNotes, to Dr. Kathy
Liszka of the University of Akron for producing the test bank, and to Dr. Steve
Armstrong of LeTourneau University for producing the PowerPoint slides that
accompany the book. The competence and graciousness of Shylaja Gattupalli at
Jouve India made for a pleasant production process.

I extend special thanks to my editor Tracy Johnson. Her ideas and enthusiasm
helped immensely with the preparation of the book.

David I. Schneider
dis@alum.mit.edu

Pearson would like to thank and acknowledge Shaligram Prajapat, Devi Ahilya Uni-
versity for contributing to the Global Edition and Somitra Sanadhya, Indian Institute
of Delhi, Rosanne Els, University of Kwazulu-Natal, and Shivani Pandit for review-
ing the Global Edition.

15

mailto:dis@alum.mit.edu

This page intentionally left blank

17

1

1.1	 An Introduction to Computing and Python  18

1.2	 Program Development Cycle  20

◆  Performing a Task on the Computer  ◆  Program Planning

1.3	 Programming Tools  22

◆  Flowcharts  ◆  Pseudocode  ◆  Hierarchy Chart  ◆  Decision Structure
◆  Direction of Numbered NYC Streets Algorithm  ◆  Repetition Structure 

◆  Class Average Algorithm

1.4	 An Introduction to Python  29

◆  Starting IDLE  ◆  A Python Shell Walkthrough 

◆  A Python Code Editor Walkthrough  ◆  An Open-​a-​Program Walkthrough

An Introduction to
Computing and Problem
Solving

	 18	 ◆	 Chapter 1  An Introduction to Computing and Problem Solving

1.1	 An Introduction to Computing and Python

An Introduction to Programming Using Python is about problem solving using computers.
The programming language used is Python, but the principles apply to most modern pro-
gramming languages. Many of the examples and exercises illustrate how computers are
used in the real world. Here are some questions that you may have about computers and
programming.

Question: How do we communicate with the computer?

Answer: Programming languages are used to communicate with the computer. At the low-
est level, there is machine language, which is understood directly by the microprocessor
but is difficult for humans to understand. Python is an example of a high-​level language. It
consists of instructions to which people can relate, such as print, if, and input. Some other
well-​known high-​level languages are Java, C++, and Visual Basic.

Question: How do we get computers to perform complicated tasks?

Answer: Tasks are broken down into a sequence of instructions, called a program, that
can be expressed in a programming language. Programs can range in size from two or three
instructions to millions of instructions. The process of executing the instructions is called
running the program.

Question: Why did you decide to use Python as the programming language?

Answer: Many people consider Python to be the best language to teach beginners how to
program. We agree. Also, Python is being used by major software companies. Python is
powerful, easy to write and read, easy to download and install, and it runs under Windows,
Mac, and Linux operating systems.

Question: How did the language Python get its name?

Answer: It is named for the British comedy group Monty Python. Python’s creator, Guido
van Rossum, is a fan of the group.

Question: This book uses the editor IDLE to create programs. How did IDLE get its name?

Answer: Idle stands for Integrated DeveLopment Environment. (Some people think the
name was chosen as a tribute to Eric Idle, a founding member of the Monty Python group.)
The IDLE editor has many features (such as color coding and formatting assistance) that
help the programmer.

Question: Python is referred to as an interpreted language. What is an interpreted language?

Answer: An interpreted language uses a program called an interpreter that translates a high-​
level language one statement at a time into machine language and then runs the program.
The interpreter will spot several types of errors and terminate the program when one is
encountered.

Question: What are the meanings of the terms “programmer” and “user”?

Answer: A programmer (also called a developer) is a person who solves problems by writing
programs on a computer. After analyzing the problem and developing a plan for solving it,
the programmer writes and tests the program that instructs the computer how to carry out
the plan. The program might be run many times, either by the programmer or by others.
A user is any person who runs the program. While working through this text, you will
function both as a programmer and as a user.

	 1.1   An Introduction to Computing and Python	 ◆	 19

Question: What is the meaning of the term “code”?

Answer: The Python instructions that the programmer writes are called code. The pro-
cesses of writing a program is often called coding.

Question: Are there certain characteristics that all programs have in common?

Answer: Most programs do three things: take in data, manipulate data, and produce results.
These operations are referred to as input, processing, and output. The input data might be
held in the program, reside on a disk, or be provided by the user in response to requests
made by the computer while the program is running. The processing of the input data
occurs inside the computer and can take from a fraction of a second to many hours. The
output data are displayed on a monitor, printed on a printer, or recorded on a disk. As a
simple example, consider a program that computes sales tax. An item of input data is the
cost of the thing purchased. The processing consists of multiplying the cost by the sales
tax rate. The output data is the resulting product, the amount of sales tax to be paid.

Question: What are the meanings of the terms “hardware” and “software”?

Answer: Hardware refers to the physical components of the computer, including all periph-
erals, the central processing unit (CPU), disk drives, and all mechanical and electrical
devices. Programs are referred to as software.

Question: How are problems solved with a program?

Answer: Problems are solved by carefully reading them to determine what data are given
and what outputs are requested. Then a step-​by-​step procedure is devised to process the
given data and produce the requested output.

Question: Many programming languages, including Python, use a zero-​based numbering system.
What is a zero-​based numbering system?

Answer: In a zero-​based numbering system, numbering begins with zero instead of one. For
example, in the word “code”, “c” would be the zeroth letter, “o” would be the first letter,
and so on.

Question: Are there any prerequisites to learning Python?

Answer: You should be familiar with how folders (also called directories) and files are managed
on your computer. Files reside on storage devices such as hard disks, USB flash drives, CDs,
and DVDs. Traditionally, the primary storage devices for personal computers were hard disks
and floppy disks. Therefore, the word disk is frequently used to refer to any storage device.

Question: What is an example of a program developed in this textbook?

Answer: Figure 1.1 shows a possible output of a program from Chapter 3. When it is first
run, the statement “Enter a first name:” appears. After the user types in a first name and

Figure 1.1  A possible output for a program in Chapter 3.

Enter a first name: James
James Madison
James Monroe
James Polk
James Buchanan
James Garfield
James Carter

	 20	 ◆	 Chapter 1  An Introduction to Computing and Problem Solving

presses the Enter (or return) key, the names of the presidents who have that first name are
displayed.

Question: How does the programmer create the aforementioned program?

Answer: For this program, the programmer writes about 10 lines of code that search a text
file named USpres.txt, and extracts the requested names.

Question: What conventions are used to show keystrokes?

Answer: The combination key1+key2 means “hold down key1 and then press key2”. The
combination Ctrl+C places selected material into the Clipboard. The combination key1/
key2 means “press and release key1, and then press key2”. The combination Alt/F opens
the File menu on a menu bar.

Question: How can the programs for the examples in this textbook be obtained?

Answer: See the preface for information on how to download the programs from the
Pearson website.

Question: Where will new programs be saved?

Answer: Before writing your first program, you should create a special folder to hold your
programs.

1.2	 Program Development Cycle

We learned in Section 1.1 that hardware refers to the machinery in a computer system (such
as the monitor, keyboard, and CPU) and software refers to a collection of instructions,
called a program, that directs the hardware. Programs are written to solve problems or
perform tasks on a computer. Programmers translate the solutions or tasks into a language
the computer can understand. As we write programs, we must keep in mind that the com-
puter will do only what we instruct it to do. Because of this, we must be very careful and
thorough when writing our instructions.

■■ Performing a Task on the Computer
The first step in writing instructions to carry out a task is to determine what the output
should be—​that is, exactly what the task should produce. The second step is to identify the
data, or input, necessary to obtain the output. The last step is to determine how to process
the input to obtain the desired output—​that is, to determine what formulas or ways of
doing things should be used to obtain the output.

This problem-​solving approach is the same as that used to solve word problems in an
algebra class. For example, consider the following algebra problem:

How fast is a car moving if it travels 50 miles in 2 hours?

The first step is to determine the type of answer requested. The answer should be a num-
ber giving the speed in miles per hour (the output). The information needed to obtain the
answer is the distance and time the car has traveled (the input). The formula

speed = distance/time

is used to process the distance traveled and the time elapsed in order to determine the
speed. That is,

	 1.2   Program Development Cycle	 ◆	 21

 speed = 50 miles/2 hours

 = 25 miles per hour

A graphical representation of this problem-​solving process is shown in Fig. 1.2.

Figure 1.2  The problem-​solving process.

We determine what we want as output, get the needed input, and process the input to
produce the desired output.

In the chapters that follow, we discuss how to write programs to carry out the preceding
operations. But first we look at the general process of writing programs.

■■ Program Planning
A baking recipe provides a good example of a plan. The ingredients and the amounts are
determined by what is to be baked. That is, the output determines the input and the process-
ing. The recipe, or plan, reduces the number of mistakes you might make if you tried to
bake with no plan at all. Although it’s difficult to imagine an architect building a bridge or
a factory without a detailed plan, many programmers (particularly students in their first
programming course) try to write programs without first making a careful plan. The more
complicated the problem, the more complex the plan must be. You will spend much less
time working on a program if you devise a carefully thought out step-​by-​step plan and test
it before actually writing the program.

Many programmers plan their programs using a sequence of steps, referred to as the
Software Development Life Cycle. The following step-​by-​step process will enable you to use
your time efficiently and help you design error-​free programs that produce the desired output.

1.	Analyze: Define the problem.

Be sure you understand what the program should do—​that is, what the output should
be. Have a clear idea of what data (or input) are given and the relationship between the
input and the desired output.

2.	Design: Plan the solution to the problem.

Find a logical sequence of precise steps that solve the problem. Such a sequence of
steps is called an algorithm. Every detail, including obvious steps, should appear in
the algorithm. In the next section, we discuss three popular methods used to develop
the logic plan: flowcharts, pseudocode, and hierarchy charts. These tools help the pro-
grammer break a problem into a sequence of small tasks the computer can perform to
solve the problem. Planning also involves using representative data to test the logic of
the algorithm by hand to ensure that it is correct.

3.	Code: Translate the algorithm into a programming language.

Coding is the technical word for writing the program. During this stage, the program is
written in Python and entered into the computer. The programmer uses the algorithm
devised in Step 2 along with a knowledge of Python.

4.	Test and correct: Locate and remove any errors in the program.

Testing is the process of finding errors in a program. (An error in a program is called
a bug and testing and correcting is often referred to as debugging.) As the program is

	 22	 ◆	 Chapter 1  An Introduction to Computing and Problem Solving

typed, Python points out certain kinds of program errors. Other kinds of errors are
detected by Python when the program is executed—however, many errors due to typ-
ing mistakes, flaws in the algorithm, or incorrect use of the Python language rules, can
be uncovered and corrected only by careful detective work. An example of such an
error would be using addition when multiplication was the proper operation.

5.	Complete the documentation: Organize all the material that describes the program.

Documentation is intended to allow another person, or the programmer at a later
date, to understand the program. Internal documentation (comments) consists of
statements in the program that are not executed, but point out the purposes of vari-
ous parts of the program. Documentation might also consist of a detailed descrip-
tion of what the program does and how to use it (for instance, what type of input is
expected). For commercial programs, documentation includes an instruction manual
and on-​line help. Other types of documentation are the flowchart, pseudocode, and
hierarchy chart that were used to construct the program. Although documentation
is listed as the last step in the program development cycle, it should take place as the
program is being coded.

1.3	 Programming Tools

This section discusses some specific algorithms and describes three tools used to convert
algorithms into computer programs: flowcharts, pseudocode, and hierarchy charts.

You use algorithms every day to make decisions and perform tasks. For instance, when-
ever you mail a letter, you must decide how much postage to put on the envelope. One rule
of thumb is to use one stamp for every five sheets of paper or fraction thereof. Suppose a
friend asks you to determine the number of stamps to place on an envelope. The following
algorithm will accomplish the task.

1.	Request the number of sheets of paper; call it Sheets.	 (input)

2.	Divide Sheets by 5.	 (processing)

3.	If necessary, round the quotient up to a whole number; call it Stamps.	 (processing)

4.	Reply with the number Stamps.	 (output)

The preceding algorithm takes the number of sheets (Sheets) as input, processes the
data, and produces the number of stamps needed (Stamps) as output. We can test the algo-
rithm for a letter with 16 sheets of paper.

1.	Request the number of sheets of paper; Sheets = 16.

2.	Dividing 5 into 16 gives 3.2.

3.	Rounding 3.2 up to 4 gives Stamps = 4.

4.	Reply with the answer, 4 stamps.

This problem-​solving example can be illustrated by Fig. 1.3.

Figure 1.3  The problem-​solving process for the stamp problem.

	 1.3   Programming Tools	 ◆	 23

Of the program design tools available, three popular ones are the following:

Flowcharts: Graphically depict the logical steps to carry out a task and show how the
steps relate to each other.
Pseudocode: Uses English-​like phrases with some Python terms to outline the task.
Hierarchy charts: Show how the different parts of a program relate to each other.

■■ Flowcharts
A flowchart consists of special geometric symbols connected by arrows. Within each sym-
bol is a phrase presenting the activity at that step. The shape of the symbol indicates the type
of operation that is to occur. For instance, the parallelogram denotes input or output. The
arrows connecting the symbols, called flowlines, show the progression in which the steps
take place. Flowcharts should “flow” from the top of the page to the bottom. Although the
symbols used in flowcharts are standardized, no standards exist for the amount of detail
required within each symbol.

The table of the flowchart symbols has been adopted by the American National Stand-
ards Institute (ANSI). Figure 1.4 shows the flowchart for the postage-​stamp problem.

The main advantage of using a flowchart to plan a task is that it provides a graphical
representation of the task, thereby making the logic easier to follow. We can clearly see
every step and how each is connected to the next. The major disadvantage is that when a
program is very large, the flowcharts may continue for many pages, making them difficult
to follow and modify.

■■ Pseudocode
Pseudocode is an abbreviated plain English version of actual computer code (hence, pseu-
docode). The geometric symbols used in flowcharts are replaced by English-​like statements
that outline the process. As a result, pseudocode looks more like computer code than does

	 24	 ◆	 Chapter 1  An Introduction to Computing and Problem Solving

a flowchart. Pseudocode allows the programmer to focus on the steps required to solve a
problem rather than on how to use the computer language. The programmer can describe
the algorithm in Python-​like form without being restricted by the rules of Python. When
the pseudocode is completed, it can be easily translated into the Python language.

The pseudocode for the postage-​stamp problem is shown in Fig. 1.5.

=

Figure 1.4  Flowchart for the postage-​stamp problem.

Figure 1.5  Pseudocode for the postage-​stamp problem.

Program: Determine the proper number of stamps for a letter.
Obtain number of sheets (Sheets)	 (input)
Set the number of stamps to Sheets / 5	 (processing)
Round the number of stamps up to a whole number	 (processing)
Display the number of stamps	 (output)

Pseudocode has several advantages. It is compact and probably will not extend for many
pages as flowcharts commonly do. Also, the pseudocode looks like the code to be written
and so is preferred by many programmers.

■■ Hierarchy Chart
The last programming tool we’ll discuss is the hierarchy chart, which shows the overall
program structure. Hierarchy charts are also called structure charts, HIPO (Hierarchy plus
Input-​Process-​Output) charts, top-​down charts, or VTOC (Visual Table of Contents) charts.
All these names refer to planning diagrams that are similar to a company’s organization chart.

	 1.3   Programming Tools	 ◆	 25

Hierarchy charts depict the organization of a program but omit the specific processing
logic. They describe what each part of the program does and they show how the parts relate
to each other. The details on how the parts work, however, are omitted. The chart is read
from top to bottom and from left to right. Each part may be subdivided into a succession of
subparts that branch out under it. Typically, after the activities in the succession of subparts
are carried out, the part to the right of the original part is considered. A quick glance at
the hierarchy chart reveals each task performed in the program and where it is performed.
Figure 1.6 shows a hierarchy chart for the postage-​stamp problem.

=

Figure 1.6  Hierarchy chart for the postage-​stamp problem.

The main benefit of hierarchy charts is in the initial planning of a program. We break
down the major parts of a program so we can see what must be done in general. From this
point, we can then refine each part into more detailed plans using flowcharts or pseudocode.
This process is called the divide-​and-​conquer method.

■■ Decision Structure
The postage-​stamp problem was solved by a series of instructions to obtain the data, per-
form calculations, and display the results. Each step was in a sequence, that is, we moved
from one line to the next without skipping over any lines. This kind of structure is called a
sequence structure. Many problems, however, require a decision to determine whether a ser-
ies of instructions should be executed. If the answer to a question is “yes”, then one group of
instructions is executed. If the answer is “no”, then another is executed. This structure is called
a decision structure. Figure 1.7 contains the pseudocode and flowchart for a decision structure.

Sequence and decision structures are both used to solve the following problem.

Figure 1.7  Pseudocode and flowchart for a decision structure.

	 26	 ◆	 Chapter 1  An Introduction to Computing and Problem Solving

■■ Direction of Numbered NYC Streets Algorithm
Problem: Given a street number of a one-​way street in New York City, decide the
direction of the street, either eastbound or westbound.
Discussion: There is a simple rule to tell the direction of a one-​way street in New York
City: Even-​numbered streets run eastbound.
Input: Street number.
Processing: Decide if the street number is divisible by 2.
Output: “Eastbound” or “Westbound”.

Figures 1.8 through 1.10 show the flowchart, pseudocode, and hierarchy chart for the num-
bered New York City streets problem.

Figure 1.8  Flowchart for the numbered New York City streets problem.

Figure 1.9  Pseudocode for the numbered New York City streets problem.

Program: Determine the direction of a numbered NYC street.
Get street
if street is even
 Display Eastbound
else
 Display Westbound

Figure 1.10  Hierarchy chart for the numbered New York City streets problem.

	 1.3   Programming Tools	 ◆	 27

■■ Repetition Structure
A programming structure that executes instructions many times is called a repetition
structure or a loop structure. Loop structures need a test (or condition) to tell when the
loop should end. Without an exit condition, the loop would repeat endlessly (an infinite
loop). One way to control the number of times a loop repeats (often referred to as the num-
ber of passes or iterations) is to check a condition before each pass through the loop and
continue executing the loop as long as the condition is true. See Fig. 1.11. The solution of
the next problem requires a repetition structure.

Figure 1.11  Pseudocode and flowchart for a loop.

■■ Class Average Algorithm
Problem: Calculate and report the average grade for a class.

Discussion: The average grade equals the sum of all grades divided by the number of
students. We need a loop to get and then add (accumulate) the grades for each student
in the class. Inside the loop, we also need to total (count) the number of students in the
class. See Figs. 1.12 to 1.14 on the next page.

Input: Student grades.

Processing: Find the sum of the grades; count the number of students; calculate average
grade sum of grades / number of students.
Output: Average grade.

■■ Comments
1.	Tracing a flowchart is like playing a board game. We begin at the Start symbol and pro-

ceed from symbol to symbol until we reach the End symbol. At any time, we will be
at just one symbol. In a board game, the path taken depends on the result of spinning
a spinner or rolling a pair of dice. The path taken through a flowchart depends on the
input.

2.	The algorithm should be tested at the flowchart stage before being coded into a pro-
gram. Different data should be used as input, and the output checked. This process
is known as desk checking. The test data should include nonstandard data as well as
typical data.

	 28	 ◆	 Chapter 1  An Introduction to Computing and Problem Solving

Figure 1.12  Flowchart for the class average problem.

Figure 1.13  Pseudocode for the class average problem.

Program: Calculate and report the average grade of a class.
Initialize Counter and Sum to 0
while there are more data
 Get the next Grade
 Increment the Counter
 Add the Grade to the Sum
Set Average to Sum / Counter
Display Average

	 1.4   An Introduction to Python	 ◆	 29

3.	Flowcharts, pseudocode, and hierarchy charts are universal problem-​solving tools. They
can be used to plan programs for implementation in many computer languages, not
just Python.

4.	Flowcharts are time-​consuming to write and difficult to update. For this reason, profes-
sional programmers are more likely to favor pseudocode and hierarchy charts. Because
flowcharts so clearly illustrate the logical flow of programming techniques, they are a
valuable tool in the education of programmers.

5.	There are many styles of pseudocode. Some programmers use an outline form, whereas
others use a form that looks almost like a programming language. Several Python key-
words, such as “if”, “else”, and “while”, are used extensively in pseudocode.

1.4	 An Introduction to Python

The discussions in this book refer to IDLE, the editor that ships with Python. You should
be able to carry out the tasks from the book with a different editor by making simple adjust-
ments. We will assume that Python 3 is installed on your computer along with IDLE (or
whatever editor you have decided to use). If necessary, see Appendix C for instructions on
installing Python and IDLE.

■■ Starting IDLE
WINDOWS: Depending on the version of Windows you are using, you should be
able to invoke IDLE with a sequence like Start/All Programs/Python 34/IDLE or by ​
clicking on a tile similar to the one in Fig. 1.15.

Figure 1.14  Hierarchy chart for the class average problem.

Figure 1.15  IDLE tile from Windows.

MAC: To invoke IDLE, open Finder, select Applications, select the Python 3.x folder,
and run IDLE from there.
LINUX and UNIX: To invoke IDLE, run idle3 from the folder /usr/bin. IDLE can
also be invoked by entering idle3 into a terminal.

